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A population genetics formulation of Eigen’s molecular quasispecies model@Naturwissenchaften58, 465
~1971!# is proposed and several simple replication landscapes are investigated analytically. Our results show a
remarkable similarity to those obtained with the original kinetics formulation of the quasispecies model.
However, due to the simplicity of our approach, the space of the parameters that define the model can be
thoroughly explored. In particular, for the single-sharp-peak landscape our analysis yields some interesting
predictions such as the existence of a maximum peak height and a minimum molecule length for the onset of
the error threshold transition.@S1063-651X~96!00410-2#

PACS number~s!: 87.10.1e, 64.60.Cn

I. INTRODUCTION

The molecular quasispecies model introduced by Eigen
more than 20 years ago@1# has become a major framework
of the research on the dynamics of competing self-
reproducing macromolecules~see@2# for a review!. In this
model, a molecule is represented by a string ofn digits
(s1 ,s2 , . . . ,sn), with the variablessi allowed to take onk
different values, each representing a different type of mono-
mer used to build the molecule. The number of different
types of molecules is thuskn. The concentrationsxi of mol-
ecules of typei51,2, . . . ,kn evolve in time according to the
differential equations

dxi
dt

5(
j
Wi j xj2@Di1F~ t !#xi , ~1!

where the constantsDi stand for the death probability of
molecules of typei andF(t) is a dilution flux that keeps the
total concentration constant. The elements of the replication
matrixWij depend on the replication rateAi of molecules of
type i as well as on the Hamming distanced( i , j ) between
stringsi and j . They are given by

Wii5Aiq
n ~2!

and

Wij5
Ai

~k21!d~ i , j ! q
n2d~ i , j !~12q!d~ i , j !, iÞ j , ~3!

where 0<q<1 is the single-digit replication accuracy,
which is assumed to be the same for all digits. Perhaps the
main outcome of the quasispecies model is that, for a given
replication accuracy, there exists a maximum string length
that selection can maintain. This phenomenon, termed the
error threshold, poses a serious difficulty in envisioning life
as an emergent property of systems of competing self-
replicating macromolecules. It seems that some sort of coop-
eration between the macromolecules must be incorporated in
the model in order to avoid this error catastrophe@3,4#.

In this paper we employ a classic population genetics ap-
proach@5# to investigate the evolution of an infinite popula-

tion of self-replicating molecules. To accomplish that we
have to make two simplifying assumptions to the original
quasispecies model. First, we assume that molecules com-
posed of the same number of monomers of each type are
equivalent, i.e., possess the same replication rate, regardless
of the particular positions of the monomers inside the mol-
ecules. Hence a given molecule is characterized solely by the
vector PW 5(P1 ,P2 , . . . ,Pk), where Pa is the number of
monomers of typea in that molecule. Since(a

kPa5n, the
number of different types of molecules is reduced to
(n1k21)!/n!(k21)!. Second, in the population genetics
approach we focus on the evolution of the monomer frequen-
cies rather than on the evolution of the molecule frequencies
or concentrations. Henceforth the variablet will denote the
number of nonoverlapping generations or simply the genera-
tion number. We assume then that, given the monomer fre-
quencies in generationt, pa(t) with (a

kpa(t)51, the mol-
ecule frequencies are given by the multinomial distribution

P t~PW !5CPW
n
@p1~ t !#

P1@p2~ t !#
P2
•••@pk~ t !#Pk, ~4!

whereCPW
n

5n!/P1!P2! •••Pk!. Thus, in each generation the
monomers are sampled with replacement from an infinite
monomer pool. The effects of random drift are neglectable
because the population of molecules is also infinite. The
changes in the monomer frequencies are due then to the driv-
ing of natural selection, modeled by the replication rate
A(PW ), and to mutations, modeled by the error rate per digit
12q. A similar assumption was employed in the analytical
study of the effects of learning on evolution@6#. With these
assumptions we are able to study analytically the dynamical
behavior of the model in the full space of the control param-
etersn,q,k and replication landscapesA(PW ). In particular,
while previous investigations@2# have almost exclusively
dealt with binary strings (k52), our population genetics ap-
proach readily applies to the analysis of more complex
strings.

A result worth mentioning concerning the quasispecies
model is the existence of a correspondence between the or-
dinary differential equations~1! and the equilibrium proper-
ties of a surface lattice systems@7#. However, from an op-
erational viewpoint, it seems easier to solve directly the
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ordinary differential equations than to use cumbersome sta-
tistical mechanics tools to obtain the surface equilibrium
properties of the corresponding lattice system for finiten @8#.
Actually, most of the statistical mechanics analyses of the
quasispecies model are restricted to the limitn→` @7–9#.

The remainder of this paper is organized as follows. In
Sec. II we derive the equations governing the evolution of
the monomer frequencies. To better appreciate the conse-
quences of our simplifying assumptions, these equations are
solved for several simple replication landscapes that have
already been thoroughly analyzed in the literature@2,8#. In
Sec. III we discuss our results and present some concluding
remarks. In particular, we point out how the model can be
generalized so as to include sexual reproduction between the
molecules.

II. MODEL

We now proceed with the derivation of the basic recur-
sion relations for the monomer frequencies. The fraction of
monomers of typea that a molecule characterized byPW
contributes to generationt11 is proportional to the product
of three factors:~a! its frequency in the populationP t(PW ) in
generationt, ~b! its replication rateA(PW ), and~c! the average
number of monomersa that replicate correctly,qPa , plus
the average number of monomersbÞa that due to replica-
tion errors mutate toa, @(12q)/(k21)#(bÞaPb . After
some simple algebra it yields

pa~ t11!5
1

k21 S 12q1
kq21

wt
(
PW

P t~PW !A~PW !PaD ,
~5!

where the normalization factorwt is the average replication
rate of the entire population in generationt,

wt5n(
PW

P t~PW !A~PW !. ~6!

Here the notation (PW stands for
(P150

n
•••(Pk50

n d(n,(a
kPa), whered(k,l ) is the Kronecker

delta. To proceed further we must specify the replication rate
A(PW ) of each molecule type, i.e., specify the replication
landscape.

A. Single sharp maximum

In this case we ascribe replication ratea to the molecule
composed ofn monomers of type 1 and replication rate 1 to
all the remaining molecules, i.e., A(PW )5a if
PW 5(n,0, . . . ,0) andA(PW )51 otherwise. This is the sim-
plest and probably the most studied replication landscape@2#
because it clearly shows that although the so-called master
string (n,0, . . . ,0) has no match, its chance of successfully
taking over the population depends nontrivially on the values
of the control parameters as well as on the initial monomer
frequenciespa(0). Hence Eq.~5! reduces to

p1~ t11!5
1

k21 F12q1~kq21!
p1~ t !1~a21!@p1~ t !#

n

11~a21!@p1~ t !#
n G

~7!

and

pa~ t11!5
1

k21 F12q1~kq21!
pa~ t !

11~a21!@p1~ t !#
nG ,

aÞ1. ~8!

For simplicity, we keep the symmetry between monomers of
type aÞ1 by setting their initial frequencies to
pa(0)5@12p1(0)#/(k21). Furthermore, we bias the initial
population towards the master string by choosing
p1(0)'1.

In Fig. 1 we present the steady-state molecule frequen-
cies, obtained by solving the recursion relation~7! for
n510, a550, andk52, as a function of the error rate per
digit 12q. Three distinct regimes can be identified. First, the
direct replication regime ~DR!, which occurs for
12q<12qt'0.241, is characterized by a molecular popu-
lation composed of a cloud of mutants around the master
string, termed aquasispecies. In this regime there is a high
proportion of type 1 monomers, i.e., the fixed point is
p1*'1. This fixed point disappears discontinuously at the
error threshold 12qt . We note that, in contrast to the origi-
nal quasispecies model, the error threshold transition is dis-
continuous. Second, the stochastic replication regime~SR!,
which occurs for 12q.12qt , is characterized by the fixed
point p1*'1/2, which corresponds to an almost uniform dis-
tribution of monomer types. Third, the complementary rep-
lication regime~CR! sets in when the replication error is so
high (12q.0.86) that the monomers are almost certain to

FIG. 1. Steady-state frequencies of molecules of typeP1510
~master string!, 9, 8, 7, 6, 5, 4, and 0 as a function of the error rate
per digit 12q for n510, a550, andk52. The error threshold
transition occurs at 12qt'0.241 and the complementary replica-
tion regime sets in for 12q.0.86.
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mutate, so that the population oscillates between the qua-
sispecies and its complement. This regime exists only for
binary strings since only in this case is the complement of a
string unique.

Some comments regarding the role of the initial monomer
frequenciespa(0) are in order. For 12q,0.239 the high-
p1 fixed point is the only stable fixed point of~7!. Above that
value, a second stable fixed pointp1*'1/2 appears. These
fixed points compete such that there is an all-or-none selec-
tion. The winner, however, is not determined by the replica-
tion rate only, but also by the initial monomer frequency
p1(0). As mentioned above, the high-p1 fixed point disap-
pears at the error threshold transition. We will return to this
issue in the analysis of the competition between two sharp
maxima. The behavior pattern of the molecule frequencies
for k.2 is qualitatively similar to that discussed above: the
DR and SR regimes are characterized by the fixed points
p1*'1 and p1*'1/k, respectively, while the CR regime is
absent.

In the following we will focus on the dependence of the
error threshold 12qt on the control parameters. The fixed
pointsp1(t11)5p1(t)5p1* of the recursion relation~7! are
the roots off (p)50, where

f ~p!5~12q!@kp211~k21!~a21!pn#

2~a21!~12p!pn. ~9!

Numerical analysis of this function indicates that the discon-
tinuous disappearance of the fixed pointp1*'1, which is the
cause of the error threshold phenomenon in our model, co-
incides with the appearance of a double root off (p). Hence
the error threshold 12qt can be easily determined by solving
f (p)50 andd f(p)/dp50 for p andq5qt simultaneously.
Eliminating the termpL of these two equations yields the
following quadratic equation forp:

knp22@11n1qk~n21!#p1qn50, ~10!

which possesses real roots for eitherqk<1 or
qk>@(n11)/(n21)#2. Only the latter is relevant for the
analysis of the error threshold since this phenomenon occurs
in the high replication accuracy region. The disappearance of
the high-p1 fixed point is associated with the larger root of
~10!, while the smaller root is related to the appearance of the
uniform fixed point p1*'1/k. In order to avoid the error
threshold discontinuous transition we must set the control
parameters so as to violate the second inequality. In particu-
lar, for n and k fixed, the discontinuous transition line
qt5qt(a) terminates at the critical point

qc5
1

kS n11

n21D
2

, ~11!

ac511knS n21

n11D
n ~k21!~n21!224n

~k21!~n221!
, ~12!

which for largen becomeqc'1/k andac'e22kn, respec-
tively. We note that the critical point coordinatespc , qc and
ac are obtained by solving the three equationsf (p)50,
d f(p)/dp50, andd2f (p)/dp250 simultaneously. The con-
dition qc<1 implies that there is a minimum string length

nmin5
Ak11

Ak21
, ~13!

below which the error catastrophe does not occur. In Fig. 2
we present the phase diagram in the space (12q,a) for
n510 andk52. The discontinuous transition between the
phases DR and SR ends at the critical point 12qc50.251
and ac558.01, while the transition between the phases SR
and CR seems to never disappear. Thus, for a given value of
n it is always possible to choose a sufficiently large value of
a so that the phases CR and SR are no longer distinguish-
able. To the best of our knowledge, there is no similar result
reported for the original quasispecies model. It must be
noted, however, that due to the numerical difficulty of solv-
ing the set ofkn ordinary differential equations~1!, the space
of parameters has not been adequately explored for that
model. In fact, the computational effort needed to study the
evolution of a population of molecules composed of more
than two types of monomers (k.2) is so large that the
important problem of the dependence of the error threshold
12qt on the number of monomer typesk has remained un-
addressed so far. In the population genetics framework, how-
ever, the number of recursion relations increases linearly
with k, so this parameter does not introduce any particular
difficulty to our analysis. Moreover, for the replication land-
scapes considered in this paper, in which the replication rates
of the molecules are determined by one type of monomer
only, the problem is reduced to the solution of a single re-
cursion relation. In Fig. 3 we present the dependence of
12qt on k for a510 and several values ofn. Note that
beyondk'4 the error threshold is almost insensitive to fur-
ther increase ofk. Hence, in order to maximize the informa-
tion content of the quasispecies, it is advantageous to choose
k as large as possible. Different values ofa do not produce
any qualitative change in this figure.

FIG. 2. Phase diagram in the space (12q,a) for n510 and
k52. The discontinuous transition between the phases DR and SR
ends at the critical point 12qc50.251 andac558.01.
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B. Single smooth maximum

In what follows we will consider the casek52 only. We
assume that the replication rates of the molecules increase
with the number of monomers of type 1 they possess, irre-
spective of the other monomer types. More specifically,

A~P1!511~a21!S P12m

n2m D g

~14!

if P1>m andA(P1)51 otherwise. Herem is an integer that
can take on the values 0,1,. . . ,n21 andg is a real, positive
variable. Clearly,m measures the size of the flat region of the
replication landscape, while the parameterg determines the
smoothness of the landscape nearm: the larger g, the
smoother the landscape. The same procedure employed in
the analysis of the single-sharp maximum, which is recov-
ered form5n21, can be used to investigate the error thresh-
old transition for the smooth replication landscape~14!. In
particular, in Fig. 4 we show the error rate per digit at the
threshold transition 12qt as a function of the exponentg for
n520, a510, and several values ofm. For a givenm there
is a critical valuegc below which the error threshold phe-
nomenon does not occur. This exponent is shown in Fig. 5 as
a function of the ratiom/n. It is clear from these figures that
broad maxima~small m) can resist the error catastrophe
longer, or even avoid it, depending on the value of the ex-
ponentg. Large values ofg actually increase the size of the
flat region and so they favor the appearance of the error
threshold. Our results are in agreement with a comment by
Tarazona@8# that the exponent with which the replication
landscape goes flat is germane to the onset of the error
threshold transition. Different values ofn and a do not
change qualitatively these results.

C. Two sharp maxima

As before, we assume thatA(PW ) depends onP1 only. In
this case the replication landscape consists of two sharp
maxima A(P150)5A0, A(P15n)5An , and A(P1)51
otherwise. In order to illustrate the role of the initial mono-
mer frequencies we present in Figs. 6–8 the frequency of
type 1 monomers as a function of the generation numbert
for n520, k52, A05200,A20510, and several initial fre-
quencies. The evolution for 12q50 is shown in Fig. 6.
There are only two stable fixed points, namely,p1*51 and 0.

FIG. 3. Error threshold 12qt as a function of the number of
monomer typesk for a510 and~from top to bottom! n58, 10,
12, 14, 16, 18, and 20. The lines are guides to the eyes.

FIG. 4. Error threshold 12qt as a function of the exponentg for
n520, a510, and~from left to right! m/n50.75, 0.5, 0.25, and
0. The curves begin atgc5gc(m).

FIG. 5. Critical value of the exponentg as a function of the ratio
m/n for n520 anda510. Below the curve the error threshold
phenomenon does not occur.
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Despite the large difference between the replication rates of
the molecules associated to these fixed points, their basins of
attraction are practically of the same size. They would be
strictly equal ifA05A20. The main effect of a large replica-
tion rate in this case is to speed up the convergence to the
low-p1 fixed point. By increasing the error rate a new stable
fixed point p1*'1/2, associated with the stochastic replica-
tion regime, appears. The interplay of the three stable fixed
points is shown in Fig. 7 for 12q50.01. For nonzero repli-
cation error rates, the basin of attraction of the low-p1 fixed
point is considerably larger than that of the high-p1 fixed
point. Of course, their basins of attraction have actually de-

creased as compared with the case 12q50. We note that
the two quasispecies do no coexist: for a given initial popu-
lation there is an all-or-none selection. Finally, in Fig. 8 we
present the evolution for 12q50.06. The high-p1 fixed
point, associated with the molecule with the smaller replica-
tion rate, has disappeared and the stochastic replication fixed
point has taken over its basin of attraction. A further increase
of the error rate 12q will eventually lead to the disappear-
ance of the low-p1 fixed point too.

Within this framework we can easily study the competi-
tion between a sharp maximum and a broad or smooth maxi-
mum @10#. The results show the same qualitative features as
those presented above. In particular, since the broader maxi-
mum possesses the larger error threshold 12qt ~see Fig. 4! it
plays the same role as the larger replication rate maximum.
We note that, in contrast to the original quasispecies model,
there is no selection transition in our model@10#, which
would amount to a discontinuous transition between the low-
and the high-p1 fixed points, i.e., the former should take over
the basin of attraction of the latter.

III. DISCUSSION

An interesting extension of the quasispecies model is the
possibility of two molecules exchanging matter during a col-
lision. Clearly, the analog to this phenomenon in the popu-
lation genetics approach is sexual reproduction. More spe-
cifically, the collision ~mating! between the molecules
~parents! (s1

f , . . . ,sn
f ) and (s1

m, . . . ,sn
m) produces the new

molecules ~offspring! (s1
f , . . . ,sc21

f ,sc
m, . . . ,sn

m) and
(s1

m, . . . ,sc21
m ,sc

f , . . . ,sn
f ), where the digit 0<c<n is the

so-called crossover point. The number of offspring depends,
of course, on the replication rate of the parent molecules.
Using the assumptions presented in Sec. I, it is straightfor-
ward to derive the following recursion relations for the evo-
lution of the monomer frequencies:FIG. 7. Same as Fig. 6, but for 12q50.01.

FIG. 8. Same as Fig. 6, but for 12q50.06.FIG. 6. Frequency of monomers of type 1 as a function of the
generation number for the two-sharp-maxima replication landscape
and several initial frequenciesp1(0). The parameters aren520,
k52, A05200,A20510, and 12q50.
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pa~ t11!5
1

k21 F12q1
kq21

2wt
(
PW f

(
PW m

P t~PW
f ,PW m!

3A~PW f ,PW m!~Pa
f 1Pa

m!G , ~15!

where

wt5n(
PW f

(
PW m

P t~PW
f ,PW m!A~PW f ,PW m! ~16!

is the average replication rate of the entire population and

P t~PW
f ,PW m!5P t~PW

f !P t~PW
m! ~17!

is the frequency of the collisions or matings between the
moleculesPW f andPW m. HereA(PW f ,PW m) determines the num-
ber of offspring generated by the mating between these two
molecules. As expected, since the positions of the monomers
inside the molecules play no role in our population genetics
approach, the basic recursion relations~15! are independent
of the crossover pointc. It is interesting to note that this
equation reduces to Eq. ~5! in the case that
A(PW f ,PW m)5A(PW f)A(PW m) and so the two reproduction
modes, asexual and sexual, yield the same results. We have
investigated the steady-state solutions of~15! under a variety
of conditions, but found no noteworthy difference from the
previously presented results. We only mention that by penal-
izing matings within the same class, i.e.,A(PW f ,PW m)51 if
PW f5PW m, we can obtain the formation of a quasispecies~a
master string surrounded by a cloud of mutants! even in the
regime of perfect replication accuracyq51.

The critical, though natural, assumption of the population
genetics approach proposed in this paper is the use of the
multinomial distribution ~4! for the molecule frequencies.
Since this is a single-peaked distribution, the coexistence of
two or more quasispecies, which could only be described by
a multipeaked distribution, is preventeda priori. In the origi-
nal quasispecies model such a coexistence is possible only in
the case of degenerate quasispecies. This is an important
issue since it would be highly desirable to study the sponta-
neous formation of hypercycles within the framework of the
quasispecies model@3,11#.

IV. CONCLUSION

In this paper we have presented a population genetics for-
mulation of the classic quasispecies model proposed by
Eigen @1#. Owing to its extreme simplicity, this formulation
may be useful, in the sense of having the value of an ap-
proximation, to tackle problems for which the numerical dif-
ficulty of solving the ordinary differential equations~1! or
employing the statistical mechanics approach@7# makes the
analysis prohibitive. Furthermore, even for the well-studied
replication landscape that consists of a single sharp peak, our
population genetics analysis has yielded some interesting and
unexpected results such as the existence of a maximum peak
height~12! and a minimum string length~13! for the onset of
the error catastrophe. It would be interesting to investigate
whether similar bounds exist for the original quasispecies
model.
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