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Population genetics approach to the quasispecies model
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A population genetics formulation of Eigen’s molecular quasispecies nidiglrwissenchafte®8, 465
(1971)] is proposed and several simple replication landscapes are investigated analytically. Our results show a
remarkable similarity to those obtained with the original kinetics formulation of the quasispecies model.
However, due to the simplicity of our approach, the space of the parameters that define the model can be
thoroughly explored. In particular, for the single-sharp-peak landscape our analysis yields some interesting
predictions such as the existence of a maximum peak height and a minimum molecule length for the onset of
the error threshold transitiofS1063-651X96)00410-73

PACS numbd(s): 87.10+¢€, 64.60.Cn

[. INTRODUCTION tion of self-replicating molecules. To accomplish that we

have to make two simplifying assumptions to the original
The molecular quasispecies model introduced by Eigemuasispecies model. First, we assume that molecules com-
more than 20 years add] has become a major framework posed of the same number of monomers of each type are
of the research on the dynamics of competing self-equivalent, i.e., possess the same replication rate, regardless

reproducing macromoleculdgsee[2] for a review. In this  of the particular positions of the monomers inside the mol-
model, a molecule is represented by a stringvofligits  ecules. Hence a given molecule is characterized solely by the

(51,82, ... .s,), with the variabless; allowed to take o« vector P=(P,,P,, ... ,P,), where P, is the number of

different values, each representing a different type of monomonomers of typer in that molecule. Sinc&“P,=v, the
mer used to build the molecule. The number of differentnumber of different types of molecules is reduced to

types of molecules is thus”. The concentrations; of mol- (3,4 x—1)1/41(x—1)!. Second, in the population genetics
ecules of typg=1,2, ... «” evolve in time according to the  approach we focus on the evolution of the monomer frequen-
differential equations cies rather than on the evolution of the molecule frequencies
or concentrations. Henceforth the variableill denote the
% _ 2 W, x;—[Dj+® (1) ], (1) number of nonoverlapping generation; or simply the genera-
dt ] 17 tion number. We assume then that, given the monomer fre-

3 quencies in generation p,(t) with 2%p,(t)=1, the mol-
where the constant®; stand for the death probability of ecule frequencies are given by the multinomial distribution
molecules of typeé and®(t) is a dilution flux that keeps the
total_concentratlon constant. _The_ elements of the replication Ht(P):CE[pl(t)]Pl[pz(t)]Pz. [p(0)]P, (4)
matrix W;; depend on the replication rafe of molecules of

typei as well as on the Hamming distandéi,j) between  \yhereC’=y1/PyIP,!---P,l. Thus, in each generation the

stringsi and]. They are given by monomers are sampled with replacement from an infinite
monomer pool. The effects of random drift are neglectable

Wi=Aid @ because the population of molecules is also infinite. The
and changes in the monomer frequencies are due then to the driv-
ing of natural selection, modeled by the replication rate
B A b dii) di) i A(IS), and to mutations, modeled by the error rate per digit
Wij “e—p@nd” (1=™, i#j, (3  1-q. A similar assumption was employed in the analytical

study of the effects of learning on evoluti¢@]. With these

where Osg<1 is the single-digit replication accuracy, assum_ptions we are at_JIe to study analytically the dynamical
which is assumed to be the same for all digits. Perhaps theehavior of the model in the full space of the control param-
main outcome of the quasispecies model is that, for a giveetersv,q,x and replication landscapesP). In particular,
replication accuracy, there exists a maximum string lengttwhile previous investigation§2] have almost exclusively
that selection can maintain. This phenomenon, termed thdealt with binary strings£=2), our population genetics ap-
error threshold, poses a serious difficulty in envisioning lifeproach readily applies to the analysis of more complex
as an emergent property of systems of competing selfstrings.
replicating macromolecules. It seems that some sort of coop- A result worth mentioning concerning the quasispecies
eration between the macromolecules must be incorporated imodel is the existence of a correspondence between the or-
the model in order to avoid this error catastropBet]. dinary differential equation€l) and the equilibrium proper-

In this paper we employ a classic population genetics apties of a surface lattice systerfig]. However, from an op-
proach[5] to investigate the evolution of an infinite popula- erational viewpoint, it seems easier to solve directly the
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ordinary differential equations than to use cumbersome sta-
tistical mechanics tools to obtain the surface equilibrium
properties of the corresponding lattice system for fimi{e].
Actually, most of the statistical mechanics analyses of the
guasispecies model are restricted to the limit o [7-9].

The remainder of this paper is organized as follows. In
Sec. Il we derive the equations governing the evolution of
the monomer frequencies. To better appreciate the conse- ¢
guences of our simplifying assumptions, these equations are
solved for several simple replication landscapes that have
already been thoroughly analyzed in the literat[2¢8]. In
Sec. Il we discuss our results and present some concluding
remarks. In particular, we point out how the model can be
generalized so as to include sexual reproduction between the
molecules. 0.2

=
04

Il. MODEL
00 : : N
We now proceed with the derivation of the basic recur- 0.0 02 04 06 08 1.0
sion relations for the monomer frequencies. The fraction of 1-q

monomers of typea that a molecule characterized tfg/ .
contributes to generation+ 1 is proportional to the product  FIG. 1. Steady-state frequencies of molecules of tige=10

. . . N (master string 9, 8,7, 6, 5, 4, and 0 as a function of the error rate
of three factors(a) its frequency in the populatioH(P) in per digit 1—q for =10, a=50, andx=2. The error threshold

generatiort, (b) its replication rate\(P), and(c) the average transition occurs at 4g,~0.241 and the complementary replica-
number of monomers that replicate correctlygP,, plus tion regime sets in for + g>0.86.
the average number of monome#s « that due to replica-

tion errors mutate tow, [(1—0q)/(k—1)]24.,Pgz. After 1 p1(t)+(a—1)[py(t)]”
some simple algebra it yields pi(t+1)= m[l—qu(Kq—l) 1+ (a—1)[py (0]’ }
1 kq— - -
Pu(t+1)=——[1-q+ > M(P)AP)P, |, and
k—1 -
5

p (t+1):—1 [1—q+(;<q—1) Palt }
« k—1 1+(@a=D[psO]")
where the normalization factaw, is the average replication

rate of the entire population in generatign a#l. (8

For simplicity, we keep the symmetry between monomers of
Wt:yz I,(P)A(P). (6) type a#1 by setting their initial frequencies to
P P.(0)=[1-p4(0)]/(k—1). Furthermore, we bias the initial
population towards the master string by choosing

Here the notation 2p stands for p1(0)%_1.
Lo 3h _od(n,25P,), wheres(k,l) is the Kronecker In Fig. 1 we present_the steady—sta.te molecple frequen-
1 K cies, obtained by solving the recursion relati¢n) for

delta. To proceed further we must specify the replication ratev=10, a="50, andx=2, as a function of the error rate per

A(P) of each molecule type, i.e., specify the replicationjgit 1 q. Three distinct regimes can be identified. First, the
landscape. direct replication regime (DR), which occurs for
1-q=1-—q;~0.241, is characterized by a molecular popu-
lation composed of a cloud of mutants around the master
string, termed ajuasispeciesin this regime there is a high

In this case we ascribe replication rateo the molecule proportion of type 1 monomers, i.e., the fixed point is
composed ol monomers of type 1 and replication rate 1 10 p* <1 This fixed point disappears discontinuously at the
all the remaining molecules, ie., A(P)=a if errorthreshold ¥ q,. We note that, in contrast to the origi-
P=(»,0,...,0) andA(P)=1 otherwise. This is the sim- nhal quasispecies model, the error threshold transition is dis-
plest and probably the most studied replication lands€ape continuous. Second, the stochastic replication regisf®),
because it clearly shows that although the so-called mastavhich occurs for +-q>1-q;, is characterized by the fixed
string (»,0, . ..,0) has no match, its chance of successfullypoint p; =~1/2, which corresponds to an almost uniform dis-
taking over the population depends nontrivially on the valuegribution of monomer types. Third, the complementary rep-
of the control parameters as well as on the initial monomelication regime(CR) sets in when the replication error is so
frequencieg,(0). Hence Eq.(5) reduces to high (1—g>0.86) that the monomers are almost certain to

A. Single sharp maximum
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mutate, so that the population oscillates between the qua- 290
sispecies and its complement. This regime exists only for
binary strings since only in this case is the complement of a
string unique.

Some comments regarding the role of the initial monomer
frequenciesp,(0) are in order. For +q<0.239 the high-
p; fixed point is the only stable fixed point 6f). Above that
value, a second stable fixed poipf~1/2 appears. These
fixed points compete such that there is an all-or-none selec-
tion. The winner, however, is not determined by the replica- ®
tion rate only, but also by the initial monomer frequency
p1(0). As mentioned above, the highy fixed point disap-
pears at the error threshold transition. We will return to this
issue in the analysis of the competition between two sharp 50 |-
maxima. The behavior pattern of the molecule frequencies
for k>2 is qualitatively similar to that discussed above: the
DR and SR regimes are characterized by the fixed points
pT~1 andp} ~1/k, respectively, while the CR regime is o A S S S
absent. 0.0 0.2 04 0.6 0.8 1.0

In the following we will focus on the dependence of the 1-q
error threshold g, on the control parameters. The fixed

pointsp; (t+1)=p,(t)=p} of the recursion relatiof7) are FIG. 2. Phase diagram in the spaced.a) for »=10 and
the roots off(p)=0, where k=2. The discontinuous transition between the phases DR and SR

ends at the critical point 2g.=0.251 anda.=58.01.
f(p)=(1-q)[xp—1+(xk—1)(a—1)p"]

~(a-1)(1-p)p". © K+l .
Ymin \/;_11 (13

(}:_)elow which the error catastrophe does not occur. In Fig. 2
we present the phase diagram in the space ¢}) for
vr=10 and«x=2. The discontinuous transition between the
phases DR and SR ends at the critical pointd,=0.251
anda.=58.01, while the transition between the phases SR
and CR seems to never disappear. Thus, for a given value of
v it is always possible to choose a sufficiently large value of
kvp?—[1+v+qr(v—1)]p+qr=0, (10) a so that the phases CR and SR are no longer distinguish-
able. To the best of our knowledge, there is no similar result
which possesses real roots for eitheqxk<<1 or reported for the original quasispecies model. It must be
qx=[(v+1)/(v—1)]% Only the latter is relevant for the noted, however, that due to the numerical difficulty of solv-
analysis of the error threshold since this phenomenon occuiiag the set ofk” ordinary differential equationd), the space
in the high replication accuracy region. The disappearance ajf parameters has not been adequately explored for that
the highp, fixed point is associated with the larger root of model. In fact, the computational effort needed to study the
(10), while the smaller root is related to the appearance of thevolution of a population of molecules composed of more
uniform fixed pointp}~1/k. In order to avoid the error than two types of monomers«{2) is so large that the
threshold discontinuous transition we must set the controlimportant problem of the dependence of the error threshold
parameters so as to violate the second inequality. In particut—q; on the number of monomer typashas remained un-
lar, for v and « fixed, the discontinuous transition line addressed so far. In the population genetics framework, how-
g;=0q;(a) terminates at the critical point ever, the number of recursion relations increases linearly
with k, so this parameter does not introduce any particular

150 |- CR

100 |-

DR SR

Numerical analysis of this function indicates that the discon-
tinuous disappearance of the fixed pgijt~1, which is the
cause of the error threshold phenomenon in our model, ¢
incides with the appearance of a double roof @f). Hence
the error threshold % g; can be easily determined by solving
f(p)=0 anddf(p)/dp=0 for p andq=q; simultaneously.
Eliminating the termp" of these two equations yields the
following quadratic equation fop:

2

v+l 11 difficulty to our analysis. Moreover, for the replication land-
qc_; v—1)"’ (11 scapes considered in this paper, in which the replication rates
of the molecules are determined by one type of monomer

Jv—1) (k=) (v— 1)2— 4y only, the problem is reduced to the solution of a single re-
ac=1+x"| S (k—1)(P—1) (12} cursion relation. In Fig. 3 we present the dependence of

1—-q; on « for a=10 and several values of. Note that
which for largev becomeg.~1/k anda.~e ?«”, respec- beyondx~4 the error threshold is almost insensitive to fur-
tively. We note that the critical point coordinatps, g. and  ther increase ok. Hence, in order to maximize the informa-

a. are obtained by solving the three equatioiip)=0, tion content of the quasispecies, it is advantageous to choose
df(p)/dp=0, andd?f(p)/dp?=0 simultaneously. The con- « as large as possible. Different valuesaotio not produce
dition g.<1 implies that there is a minimum string length any qualitative change in this figure.
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FIG. 3. Error threshold %q, as a function of the number of FIG. 4. Error threshold g, as a function of the exponertfor
monomer typesc for a=10 and(from top to bottorh »=8, 10, ~ »=20,a=10, and(from left to righ n/»=0.75, 0.5, 0.25, and
12, 14, 16, 18, and 20. The lines are guides to the eyes. 0. The curves begin ag.= y(u).

B. Single smooth maximum C. Two sharp maxima

In what follows we will consider the case=2 only. We As before, we assume thA(P) depends orP; only. In
assume that the replication rates of the molecules increadBiS case the_repllcatlon Iand_scaEe consists of th sharp
with the number of monomers of type 1 they possess, ireMaXima A(P1=0)=A,, A(P,=v)=A,, and A(P,)=1

spective of the other monomer types. More specifically, otherwise. In _order to |Ilustrate_1 the_ role of the initial mono-
mer frequencies we present in Figs. 6—8 the frequency of

pl_M)V type 1 monomers as a function of the generation number

(14)  for v=20, k=2, A;=200, A,,=10, and several initial fre-
guencies. The evolution for-1q=0 is shown in Fig. 6.
There are only two stable fixed points, namedy,= 1 and 0.

A(P1)=1+(a—1)( -

if P,=u andA(P,)=1 otherwise. Hereg: is an integer that
can take on the values 0,1, . ,»—1 andy is a real, positive 10
variable. Clearlyu measures the size of the flat region of the
replication landscape, while the parametedetermines the
smoothness of the landscape near the larger y, the osl
smoother the landscape. The same procedure employed in
the analysis of the single-sharp maximum, which is recov-
ered foru=v—1, can be used to investigate the error thresh-

old transition for the smooth replication landscagd). In °er
particular, in Fig. 4 we show the error rate per digit at the
threshold transition * g; as a function of the exponentfor =
v=20,a=10, and several values @f. For a givenu there 04

is a critical valuey, below which the error threshold phe-
nomenon does not occur. This exponent is shown in Fig. 5 as
a function of the ratiqu/v. It is clear from these figures that 02f
broad maxima(small u) can resist the error catastrophe
longer, or even avoid it, depending on the value of the ex- i
ponenty. Large values ofy actually increase the size of the 0.0 T T T T

flat region and so they favor the appearance of the error 0 2 4 6 8 10 12
threshold. Our results are in agreement with a comment by y

Tarazona[8] that the exponent with which the replication

landscape goes flat is germane to the onset of the error FiG. 5. Critical value of the exponentas a function of the ratio
threshold transition. Different values of and a do not  u/v for =20 anda=10. Below the curve the error threshold
change qualitatively these results. phenomenon does not occur.
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FIG. 6. Frequency of monomers of type 1 as a function of the FIG. 8. Same as Fig. 6, but for-1g=0.06.

generation number for the two-sharp-maxima replication landscape
and several initial frequencigs,(0). The parameters are= 20,

k=2, Ag=200, Ay=10, and L q=0. creased as compared with the casedqe=0. We note that

the two quasispecies do no coexist: for a given initial popu-

Despite the large difference between the replication rates df’mon there is an aI_I—or—none selection. Flnall_y, n F'.g' 8 we
the molecules associated to these fixed points, their basins BfeSent the evolution for 2q=0.06. The highp, fixed
attraction are practically of the same size. They would bd0int, associated with the molecule with the smaller replica-
strictly equal ifAq=A,. The main effect of a large replica- t|on rate, has d|sappe_ared a_md the stm_:hastlc repllca_tlon fixed
tion rate in this case is to speed up the convergence to theoint has taken over its basin of attraction. A further increase
low-p; fixed point. By increasing the error rate a new stableof the error rate +q will eventually lead to the disappear-
fixed point p* ~1/2, associated with the stochastic replica-ance of the lowp, fixed point too.
tion regime, appears. The interplay of the three stable fixed Within this framework we can easily study the competi-
points is shown in Fig. 7 for £ q=0.01. For nonzero repli- tion between a sharp maximum and a broad or smooth maxi-
cation error rates, the basin of attraction of the lpwfixed =~ mum{[10]. The results show the same qualitative features as
point is considerably larger than that of the highfixed those presented above. In particular, since the broader maxi-
point. Of course, their basins of attraction have actually demum possesses the larger error thresholdyl(see Fig. 4it
plays the same role as the larger replication rate maximum.
10 We note that, in contrast to the original quasispecies model,
there is no selection transition in our moddl0], which
would amount to a discontinuous transition between the low-
and the highp, fixed points, i.e., the former should take over
the basin of attraction of the latter.

0.7
\ ll. DISCUSSION
0.6

0.9

0.8

_ 05 An interesting extension of the quasispecies model is the
o possibility of two molecules exchanging matter during a col-
04 lision. Clearly, the analog to this phenomenon in the popu-
lation genetics approach is sexual reproduction. More spe-
03 L g L. .
\ cifically, the collision (mating between the molecules
02 (parent$ (s!,...,s") and G, ...,s™ produces the new
molecules (offspring (s}, ...s._;,sT,...,s™ and
0.1 (s, ...sm,,sh, ... .s"), where the digit G&c<v is the
0.0 . . . , so-called crossover point. The number of offspring depends,
0 20 40 60 80 of course, on the replication rate of the parent molecules.
t Using the assumptions presented in Sec. |, it is straightfor-

ward to derive the following recursion relations for the evo-
FIG. 7. Same as Fig. 6, but for-1g=0.01. lution of the monomer frequencies:
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1
k—1

kq—1 . . The critical, though natural, assumption of the population
> 2 I(P",P™) genetics approach proposed in this paper is the use of the
PP multinomial distribution(4) for the molecule frequencies.
Since this is a single-peaked distribution, the coexistence of
, (15  two or more quasispecies, which could only be described by
a multipeaked distribution, is preventagriori. In the origi-
nal quasispecies model such a coexistence is possible only in
where the case of degenerate quasispecies. This is an important
issue since it would be highly desirable to study the sponta-
we=v>, >, P\, PMA(Pf,P™) (16)  neous formation of hypercycles within the framework of the
Pl pm guasispecies mod¢B,11].

Pu(t+1)=

1-g+

is the average replication rate of the entire population and IV. CONCLUSION

I(P",P™) =TI,(P)IT,(P™) (17 In this paper we have presented a population genetics for-
. . , mulation of the classic quasispecies model proposed by
is the frequency of the collisions or matings between thezjgen[1]. Owing to its extreme simplicity, this formulation
moleculesP’ and P™. HereA(P',P™) determines the num- may be useful, in the sense of having the value of an ap-
ber of offspring generated by the mating between these tw@roximation, to tackle problems for which the numerical dif-
molecules. As expected, since the positions of the monomeffiulty of solving the ordinary differential equatiori$) or
inside the molecules play no role in our population geneticemploying the statistical mechanics approfthmakes the
approach, the basic recursion relatidt$) are independent analysis prohibitive. Furthermore, even for the well-studied
of the crossover point. It is interesting to note that this replication landscape that consists of a single sharp peak, our
equation reduces to Eq.(5 in the case that population genetics analysis has yielded some interesting and
A(PfP™=A(P")A(P™ and so the two reproduction unexpected results such as the existence of a maximum peak
modes, asexual and sexual, yield the same results. We hatiight(12) and a minimum string lengti3) for the onset of
investigated the steady-state solutiongi®) under a variety the error catastrophe. It would be interesting to investigate
of conditions, but found no noteworthy difference from the whether similar bounds exist for the original quasispecies
previously presented results. We only mention that by penalmodel.

izing matings within the same class, i.é\(l3f,|5m)=l if

Pf=P™ we can obtain the formation of a quasispedias ACKNOWLEDGMENTS
master string surrounded by a cloud of mutameen in the This work was supported in part by Conselho Nacional de
regime of perfect replication accuraqy=1. Desenvolvimento Cierfico e Tecnolgico (CNPg.
[1] M. Eigen, NaturwissenchaftesB, 465 (1971). [6] J. F. Fontanari and R. Meir, Complex Sy4t.401(1990.
[2] M. Eigen, J. McCaskill, and P. Schuster, J. Phys. Chea. [7] 1. Leuthausser, J. Chem. Phy84, 1884(1986); J. Stat. Phys.
6881(1988; Adv. Chem. Phys75, 149(1989. 48, 343(1987).
[3] M. Eigen and P. Schustefhe Hypercycle—A Principle of [8] P. Tarazona, Phys. Rev. 45, 6038(1992.
Natural Self-OrganizatioriSpringer-Verlag, Berlin, 1979 [9] S. Franz, L. Peliti, and M. Sellitto, J. Phys. 26, L1195
[4] S. A. Kauffman, The Origins of Order(Oxford University (1993.
Press, Oxford, 1993 [10] P. Schuster and J. Swetina, Bull. Math. Bi50, 635 (1988.

[5] D. L. Hartl and A. G. ClarkPrinciples of Population Genetics [11] I. R. Epstein, J. Theor. BiolZ8, 271(1979.
(Sinauer, Sunderland, 1989



